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Abstract—A water drop behaves differently from a large water body because of its strong viscosity and surface tension under
the small scale. Surface tension causes the motion of a water drop to be largely determined by its boundary surface. Meanwhile,
viscosity makes the interior of a water drop less relevant to its motion, as the smooth velocity field can be well approximated by an
interpolation of the velocity on the boundary. Consequently, we propose a fast deformable surface model to realistically animate
water drops and their flowing behaviors on solid surfaces. Our system efficiently simulates water drop motions in a Lagrangian
fashion, by reducing 3D fluid dynamics over the whole liquid volume to a deformable surface model. In each time step, the model
uses an implicit mean curvature flow operator to produce surface tension effects, a contact angle operator to change droplet
shapes on solid surfaces, and a set of mesh connectivity updates to handle topological changes and improve mesh quality
over time. Our numerical experiments demonstrate a variety of physically plausible water drop phenomena at a real-time rate,
including capillary waves when water drops collide, pinch-off of water jets, and droplets flowing over solid materials. The whole
system performs orders-of-magnitude faster than existing simulation approaches that generate comparable water drop effects.

Index Terms—deformable surface model, surface tension, mean curvature flow, water drop simulation
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1 INTRODUCTION

Water drops appear everywhere in our daily life, from
wall panels when we take showers in the bathroom, to
car windshields when we drive on a rainy day. Compared
with simulation of large water bodies, how to efficiently
simulate water drops is an even more challenging problem
as described by Wang et al. [1]. This is mainly due to
the large viscosity and surface tension effect under a small
scale. When water drops are defined by 3D volumetric
representations, the large viscosity and surface tension
effects require a small time step in order to ensure accuracy
and stability. A 3D representation also requires a large
memory cost to maintain all of the surface details, making
it difficult to handle scenes with numerous water drops that
we usually see in the real world. In general, most generic
fluid simulation techniques are not directly applicable to
this domain. To the best of our knowledge, there exists no
simple yet efficient algorithm to animate small-scale water
phenomena.

While the viscosity and surface tension effects cause diffi-
culties in simulating water drops as 3D volumes, we found
that they can be beneficial when water drops are animated in
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a surface representation. Large viscosity is likely to smooth
out the velocity field of a water drop, making it safe to
ignore the water drop interior and focus on its boundary
surface. At the same time, the surface tension force can be
calculated directly using the mean curvature of the surface.
This effect brings smoothness to the surface and makes
topological changes easier to handle.

Based on these observations, we present an efficient La-
grangian deformable surface model for physically plausible
animation of water drops and their interactions with solid
surfaces. Under this model, we reduce the degrees of
freedom of water drop motions to the boundary nodes of
a dynamic system, thus dramatically decrease the running
time. The model is made of two crucial components:

• Deformation Operators: We present a series of de-
formation operators to evolve water drops over time,
so that they behave in a physically plausible way. For
example, our implicit mean curvature flow operator
efficiently produces surface tension effects, and our
contact angle operator generates various hydrophilic
behaviors when water drops flow on solid surfaces.

• Mesh Operators: A set of mesh operators optimize
the mesh quality and handle topological changes, such
as mesh merge and split. Without mesh operators,
meshes cannot be robustly simulated and they cannot
interact with each other in a proper way.

The whole system is an organic combination of individual
operators and it allows us to produce water drop effects that
each component alone is not able to generate. For example,
although mesh operations have been studied for decades,
their robustness remains questionable when they are applied
in generic fluid simulation as Wojtan et al. pointed out
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(in [2], [3], [4]). We found that certain mesh operators can
still be effective under the small-scale assumption. On the
other hand, although surface tension flow and volume con-
servation techniques have been studied by Müller [5] and
Brochu [6], they are not directly applicable to complicated
scenes when water drops frequently collide and split. By
combining these operators into a system, we recognized
and verified their effectiveness under the small-scale water
animation context through a variety of realistic examples,
including capillary waves when water drops collide, pinch-
off of water jets, and droplets flowing over various solid
materials. A typical scene that contains 20,000 surface
triangles can be simulated at 30 frames per second. We
also validate our deformable surface model by comparing
water drop simulation results with real-world experiment
videos.

2 PREVIOUS WORK

Since physically based fluid simulation was first intro-
duced into the graphics community for animation purposes,
various numerical techniques have been proposed using
different water representations. Water bodies can be repre-
sented using implicit functions and animated using Eulerian
approaches, such as [7], [8], [9], [10], [11], [12], [13], [14].
On the other hand, Lagrangian approaches explicitly track
water surfaces by representing water as a set of smoothed
particles [15], [16], [17], [18], or tetrahedral meshes [19],
[20]. Hybrid methods that use more than one representation
have also been proposed to generate detailed water surface
behaviors for specific problems, including [3], [21], [22].

Among existing physically based water simulation tech-
niques, our work is most related to numerical methods
that handle surface tension forces, including surface tension
forces in Smoothed Particle Hydrodynamics (SPH) [17],
practical simulation of surface tension [23], liquid-air
boundary conditions [24], a virtual surface method for
water drops on solid surfaces [1], and surface tension in
incompressible two-phase flow [25].

Our deformable surface model is also closely related to the
general shallow wave model proposed by Wang et al. [26].
While their mesh-based height field representation allows
them to efficiently generate water drop flowing on solid sur-
faces, their technique relies on solid surface discretization
and it cannot handle concave or free-falling water drops.
Alternatively, the hybrid method proposed by Thürey et
al. [4] used surface meshes to represent fine details of
small water drops. Our technique can achieve similar results
in a significantly more efficient way. Under a small-scale
assumption, we can use a set of mesh operators to directly
animate surface meshes without underlying Eulerian-based
fluid simulators.

Our approach to the approximation of surface tension on
water drop boundaries is similar to [5]. Since surface
tension can be treated as the force generated by a potential
energy proportional to the surface area, its effect is often
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Fig. 1: The pipeline of the deformable surface model for
simulating water drops.

related to the mean curvature flow. Implicit integration
methods proposed in [27] and [28] formulate the Laplace-
Beltrami operator into a sparse linear system, so that the
flow can be efficiently calculated using a large time step.
While original mean curvature flow algorithms tend to
cause volume loss over time, a volume-preserving mean
curvature flow algorithm proposed in [29] uses the gradient
flow to compensate volume loss in a local way. Our system
is also formulated in this fashion.

3 APPROACH OVERVIEW

Our deformable surface model is based on the assumption
that water drop motion is dominated by its boundary
surface, due to the large viscosity and surface tension
effects at a small scale. The model can be separated into
two major components. The first component consists of
deformation operators that evolve surface meshes over
time in a physically plausible manner. These operators
consider external forces, friction, surface tension and other
physics phenomena relevant to water drops. The second
component contains a set of mesh operators that process
topological changes, including mesh merge, split and mesh
optimization that improve the mesh quality. They make sure
that water drop interactions are correctly handled so that
deformation operators can be robustly processed. Since the
whole model is based on surface meshes, they need to be
efficiently performed over time.

The whole system pipeline is shown in Figure 1. we
use four deformation operators to update the velocity and
position for each vertex. External forces, including both
gravity and solid collision forces, are first applied on the
mesh shape and its velocities. The mean curvature flow
is then used to mimic surface tension behaviors using
an implicit integrator. To produce different hydrophilic
effects when water drops flow on solid surfaces, we use a
contact angle operator to explicitly modify the contact line
according to the contact angle condition. Finally, volume
loss is corrected using a volume correction operator. Once
we finish evolving surface meshes, we use mesh operators
to handle collisions and splits of water drops. We also
optimize the mesh quality to enhance the robustness of the
deformation operators.
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Operators are processed independently and sequentially in
our system. Each operator can be considered as a filter
to velocities and positions of mesh vertices. After being
processed by the previous operator, vertex velocities and
positions become the input to the next operator. To simplify
the notation, we will use vold

i and xold
i to denote the

velocity and position of vertex i before it is processed by
an operator, and vnew

i and xnew
i as vertex i’s velocity and

position after processing.

Since operators are processed independently, constraints en-
forced by one operator may be violated by other operators
throughout the process. For example, volume conservation
enforced by the volume correction operator may be violated
again by mesh operators. Fortunately, we found from our
experiment that we can safely ignore conflictions among
different operators, as long as constraints can be iteratively
satisfied in the system over time. The only exception
is the solid-water collision constraint, which may cause
noticeable volume loss and penetration issue if not properly
handled. To solve this problem, we label out colliding
vertices during the solid-water collision process in the
external force operator. We then simply prevent them from
moving in the solid surface normal direction, when we
process other operators.

4 DEFORMATION OPERATORS

Similar to the method of characteristics that reduces the
Navier-Stokes equations into a family of simple equations,
we propose a set of deformation operators to evolve the
velocity and position for each mesh vertex over time.
Instead of formulating the problem over the whole water
drop volume, we only consider the deformation of the
surface boundary. This simplifies the problem and makes
the deformation operator more efficient to process.

4.1 External Forces

We consider external forces, including gravity, solid colli-
sion, friction and viscosity in this subsection. Let vold

i be
the velocity of vertex i before this operator, the gravity
force can be simply applied as: vnew

i = vold
i + g∆t, in

which vnew
i is the new velocity, g is the gravity acceleration

and ∆t is the time step. The position xi of vertex i is
then evolved using the forward Euler method as: xnew

i =
xold
i + vnew

i ∆t. By using the updated vertex positions, we
find solid-water collisions either analytically or numerically
by detecting whether the vertex penetrates the surface of a
solid object. If that happens, the vertex position xnew

i will
be projected to the nearest location on the solid surface,
and the velocity will also be adjusted in an inelastic way:

vnew
i = vold

i −
(
(vold

i − vs) · ni

)
ni, (1)

in which vs is the velocity of the solid object at xnew
i and ni

is the solid surface normal at xnew
i . Intuitively, Equation 1

removes any relative velocity along the normal direction

between the vertex and the solid object. Once colliding
vertices are found and processed, we apply friction forces
on them to account for the slipping condition between water
and the solid object:

vnew
i =

{
0,

∣∣vold
i

∣∣ < ε

vold
i − εvold

i

∣∣vold
i

∣∣−1, otherwise
(2)

in which ε is a friction magnitude coefficient. We then use
the difference between vnew

i and vold
i to immediately adjust

the vertex position: xnew
i = xold

i + (vnew
i − vold

i )∆t.

Although the viscosity is not considered as an external force
in volumetric fluid simulators, we apply a damping force
on the surface model to achieve similar viscosity effects.
Similar to the damping force used in a mass-spring system,
our damping effect is made of two terms:

vnew
i = (1− µ∆t)vold

i + η∆t∆vold
i (3)

in which the first term is caused by a regular damping
force that gradually reduces the velocity magnitude in each
time step using a constant ratio µ, and the second term
is caused by an explicit Laplacian-Beltrami operator using
a viscosity coefficient η. The second term is especially
similar to the viscosity term in the Navier-Stokes equations,
except that it is defined over the surface mesh only. µ is
typically chosen from 0.3 to 0.5, and η is usually between
0 and 0.1. Since our experiment shows that using a large η
can further avoid certain mesh quality issues, we allow the
system to apply extra viscosity damping effect if necessary
(i.e., when the mesh quality is unsatisfactory even after
geometric operations, which will be described in Section 5).

4.2 Mean Curvature Flow

We use the mean curvature flow to generate surface tension
behaviors as Sussman et al. [25] suggested. Let x be any
point on the water surface S, γ be the coefficient of the
curvature flow, and ∇2

S be the Laplace-Beltrami operator
for S. The mean curvature flow in a continuous setting is
defined as:

∂x

∂t
= −2γκn = γ∇2

Sx, (4)

in which κn is the mean curvature defined in the normal
direction n. A semi-implicit method proposed by Desbrun
et al. [27] discretizes this function over a triangle mesh:(

I + γ∆tM−1L
)
Xnew = Xold, (5)

in which X is the vertex position vector, ∆t is the time
step, M is the lumped mass matrix and L is a symmetric
matrix consisting of cotangent coefficients from the dis-
crete Laplace-Beltrami operator. Let N(i) be the one-ring
neighborhood of vertex i.

lij = −1

2
(cotαij + cotβij), for j ∈ N(i) (6)

and,
lii = −

∑
j∈N(i)

lij , (7)
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Fig. 2: Droplets on the solid surfaces with different contact angles. They are 60, 90, and 120 degrees form left to right.

in which αij and βij are the two angles opposite to the
edge between i and j. Since both I and L are symmetric,
Equation 5 can be transformed into a symmetric positive
definite system by multiplying M on both sides. We use
a conjugate gradient solver with an incomplete Cholesky
preconditioner to solve this system. The solution is a new
vertex position vector. Once we obtain the new intermediate
positions, the velocity at each vertex is updated again:
vnew
i = vold

i + (xnew
i − xold

i )/∆t.

4.3 Contact Angle Operator

The mean curvature flow allows us to generate surface ten-
sion effects on water surface boundaries between water and
air. When a water drop flows on a solid surface, its contact
line will be further affected by the hydrophobicity of the
solid material. Different hydrophobic properties cause water
drops to form different shapes. A characteristic way to
describe the hydrophilic property is the stable contact angle,
defined as the angle between the water/air surface and
the solid surface when a water drop reaches equilibrium.
We propose a novel contact angle operator to achieve the
hydrophilic effect by explicitly finding the current contact
angle and using it to drive the motion of the contact line.
This allows us to realistically generate various water drops
on different solid surfaces as Figure 2 shows. It also causes
small water drops to stay on a window panel in Figure 10,
because of a larger stable contact angle when the contact
line moves forward (advancing contact angle) and a smaller
stable contact angle when the contact line retreats (receding
contact angle).

The first step in this operator is to locate the contact
line on the surface mesh. Supposing that vertices that
collide with solid objects have been labeled during the solid
collision step in Section 4.1, we define contact vertices as
those colliding vertices that are neighboring non-colliding
vertices (i.e., they are neighboring three interfaces: water-
air, water-solid and air-solid). Contact lines are then simply
defined as a set of edges connecting contact vertices, as the
red curve shows in Figure 3.

Once we find the contact line, we move the contact line
in order to reach a stable contact angle. Inspired by the

i
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L
n

A B
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P
n

Fig. 3: The contact line and its neighborhood.

virtual surface method proposed by Wang et al. [1], we first
try to adjust the mean curvature estimator at the contact
line so that the mean curvature flow drives the contact
line to move either forward or backward automatically.
Unfortunately, our experiment shows that this approach
becomes problematic when water drops are represented
as surface meshes, since the mean curvature flow relies
heavily on the mesh quality and the mesh quality around
the contact line is typically not comparable to other places
on the surface mesh due to their sharp curvatures.

Instead, we propose an explicit way to calculate the current
contact angle and then use it to move each vertex on the
contact line. Let O be a contact vertex, and, e.g., A, B and
C be its three neighboring triangles between water and air
as Figure 3 shows, we find the water-air surface normal
nL at vertex O by the area-weighted average of triangle
normals of A, B and C. The angle between ni and nL is
a good approximation of the contact angle for vertex O,
as it measures the dihedral angle between the two tangent
planes.

Based on whether the current contact angle is larger or
smaller than the stable contact angle, the contact vertex
should move either forward or backward. In practice, its
more complicated due to the water hysteresis phenomena
mentioned in [1]. So we use a dynamic contact angle
scheme to guide contact line motions by applying a bound-
ary force on each contact vertex:

fbnd =

 0,
α(θ − θrc)np|np|−1,
α(θ − θac )np|np|−1,

θrc < θ < θac
θ < θrc
θ > θac

(8)
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in which θrc and θac are the receding and advancing contact
angles, α is a magnitude coefficient for the boundary force,
and np is the projection of water surface normal nL on the
solid surfaces as Figure 3 shows. Intuitively, Equation 8
implies that the contact vertex is reluctant to move and
tries to minimize the boundary force magnitude. This model
is important for us to make small water drops stay on a
window panel as Figure 10 shows. Figure 11 also shows
that some water drops are even able to rest underneath the
tweety model, since the receding contact angle causes a
strong surface tension force to counter the gravity.

4.4 Volume Correction

Water drop volumes can be changed by either deformation
operators or mesh operators, and it can be easily accumu-
lated to cause obvious visual artifacts over time. In this
subsection, we propose a volume correction operator to
minimize volume changes.

Inspired by volume correction techniques for the mean
curvature flow problem proposed in [5] and [29], we
develop a volume correction method to handle volume
changes caused by all possible operations, not just by the
mean curvature flow operator. We first calculate the rigid
velocity of each water drop, including both translational
velocity and rotational velocity, and then remove them from
the velocity field over the mesh. The remaining velocity ui

deforms the water drop and causes its volume to change.
Let ai be the volume change rate per unit area, we estimate
ai as:

ai = ui · ni, (9)

in which ni is the water surface normal at vertex i. We fur-
ther calculate the local average of ai over i’s neighborhood
N(i) as āi:

āi =

∑
j∈N(i)

Ajaj∑
j∈N(i)

Aj
, (10)

where Ai is the lumped area of vertex i. We then subtract
āi from ui:

ui = ui − āini, (11)

This is similar to the local volume correction method
proposed by Eckstein et al. [29], except that we correct
volumes caused by the deformation velocity ui, rather than
the mean curvature flow.

Alternatively, a global volume correction method can also
be used to explicitly fix volume changes. This is done
by calculating the volume change between current and
the initial volume and then offsetting the water mesh
uniformly with a distance d = ∆V/A, in which ∆V is
the volume change and A is the total surface area. The
offset is performed by moving each vertex along its normal
direction: ui = ui + dni.

We noticed that the local method usually preserves capillary
waves better during the simulation, as the bar example
shows in Figure 4. On the other hand, it does not guarantee

Local volume correction method

Global volume correction method

Fig. 4: A bar-shaped water drop deforms under the surface
tension force. Using the local volume correction method
(top), the system is able to preserve more surface details
than the global volume correction method (bottom).

exact volume conservation like the global method, since
āi in Equation 10 only approximates how fast the volume
changes at vertex i numerically. Therefore, we choose
different volume correction operators under different sit-
uations. When simulating multiple water drops from a
distant view, we choose the global correction operator for
efficiency since capillary behaviors are hardly noticeable.
But when those details are important in the animation,
we choose the local correction operator, followed by a
global operator to remove remaining volume changes if
necessary. Once ui gets processed, we add the rigid velocity
component back to ui and the result becomes a volume-
preserving velocity field.

5 MESH CONNECTIVITY OPERATORS

So far we have described how to update vertex positions
of the mesh through a set of deformation operators. We
now elaborate on the adaptive remeshing stage, which
handles topological changes such as merging and splitting,
adjusts sampling density, and improves mesh quality. The
whole method completely relies on mesh operations and it
does not use any volumetric representation for topological
checks, as Wojtan and his collaborators did in [2], [3].

During each time step, we perform local topology repairs.
The main steps include edge collapse, edge split and edge
flip, as Hoppe et al. proposed in [30]. We split edges if
their lengths are above a maximum threshold, and collapse
edges when their lengths are below a minimum threshold.
We set the minimal threshold 0.04cm, while the maximum
threshold is set to be three times of the minimum, as
mentioned by Brochu in [31]. In order to speed up the
process, we use two priority queues (implemented as a
min-heap and a max-heap) to sort the edges according to
their lengths. We flip an edge if it has a negative cotangent
weight, which intuitively means that the edge may violate
the Delaunay condition. Mesh operators improve mesh
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quality and they have direct influence on the performance
of deformation operators, as we found in our experiment.

We apply a weighting factor to the edge length so that
the mesh can be adaptively sampled during the simulation.
For example, when an edge is defined over the water-solid
interface, we assign a small weight to its length so that
the edge can collapse even if its actual length is above the
minimum threshold. This allows us to have fewer vertices
over the water-solid interface, as their positions do not
affect water drop motions.

Due to the mean curvature flow and the contact angle model
proposed in Section 4.2 and 4.3, vertices along the contact
line are sensitive to topological changes. To avoid potential
stability issues near the contact line, we do not flip edges
that are part of the contact line. However, edge split and
collapse are still allowed since they have less influence on
the contact line shape.

5.1 Mesh Merge

In order to handle water drop collisions, we maintain
a bounding box for each water drop. For each pair of
water drops that have intersecting bounding boxes, we
apply mesh-mesh collision detection by testing edge-face
collisions. We use an AABB tree to accelerate this detection
process. When collision happens, we perform a Boolean
union operation on the two volume sets as follows. First,
we identify the intersection curve by using the intersection
method proposed in [32]. We then re-triangulate the whole
intersection neighborhood and we perform a mesh coloring
method proposed in [32] to decide whether a face is inside
or outside of the other mesh. Once the inside and outside are
recognized, we remove all triangles inside and stitch outside
triangles together, so that the water surface mesh becomes
closed again. Any volume loss during the merging process
will be corrected later using the global volume correction
method.

We process mesh self-collisions in a similar fashion. Al-
though we did implement it in our system, we usually turn it
off for animation production in practice, since the additional
step will greatly increase the computational cost and have
minimal impact visually. This is based on the assumption
that self-collision rarely happens for small water drops,
because of the strong surface tension effects.

5.2 Mesh Split

We perform water drop splits at the edge collapse stage.
Whenever edge collapse causes the mesh to be non-
manifold, we separate the mesh into two meshes (connected
components) in order to maintain the manifold property.
Given A and B as two vertices of the edge that is going
to be collapsed as in Figure 5a, we detect this situation
in practice by testing whether A and B share a common
neighboring vertex E, which is not incident to either of

A
B

C

D

E A B

E

A’ B’

E’

(a)

A

B

C

D

(b)

Fig. 5: Mesh split scheme: (a) We separate the mesh if it
has a thin tube-like shape. (b) If one connected component
becomes a single tetrahedron after mesh split, we simply
delete it.

(a) (b)

(c) (d)

(e) (f)

Fig. 6: Two droplets colliding into each other. The topology
of the mesh is refined dynamically over time.

their common adjacent triangles. If such an E exists, we
split the mesh into two meshes at A, B and E, by inserting
new vertices and triangles into corresponding meshes. In
the extreme case when a new mesh is a single tetrahedron,
we simply delete it as shown in Figure 5b. After mesh
split, new meshes are treated as two individual water drops.
Any volume loss in the process is evenly distributed to two
new meshes, and compensated by the next global volume
correction operator.
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6 APPLICATION AND RESULTS

We have created animations for various scenarios involving
water drops using the deformable surface model (please
refer to the attached video for animation results). Our
system, implemented using multi-threading, runs on an 8-
core Xeon 2.4GHZ, 16GB RAM workstation.

The mesh resolution varies from 10K to 50K in our
experiment and the simulation system typically runs at 10
to 50 FPS. On average, 58 percent of the computational cost
is spent on solving the mean curvature flow and evolving
the surface mesh. Collision detection uses 30 percent of
the computational time. The rest is used to process mesh
connectivity operators, including mesh merge, split and flip.

6.1 Validation

6.1.1 Colliding Droplets

In this example, we compare our animation results with a
real water drop collision experiment1. Figure 6 shows that
our method can accurately simulate the capillary waves over
the water drop surface, even though this is only a surface
deformable model.

6.1.2 Droplet Hitting the Ground

We compare our result with a real droplet hitting the ground
experiment2, in order to test how the contact angle operator
performs in an extreme condition. Specifically, the ground
plane is set to be highly hydrophilic. Figure 7 shows that
the water drop quickly spread out on the solid surface due
to the strong hydrophilic behavior.

6.1.3 Resting Droplets

Figure 8 shows different shapes of a water drop when
the surface tension coefficient varies. Adjusting the surface
tension coefficient as shown in Figure 8 will produce effects
similar to modifying the contact angle condition, as shown
in Figure 2. While both examples look physically plausible
as static water drops, they are simulated at different physics
conditions and their dynamic behaviors are different.

6.2 Animation

6.2.1 Water Tap

Figure 9 shows an animation of water streaming from a
tap. The stream splits into small water drops due to the
Rayleigh-Plateau instability [4]. In general, a large surface
tension coefficient is more likely to cause the water streams
to split. This example runs at 50FPS.

1. http://www.youtube.com/watch?v=uVQS2W0 r7U
2. http://www.youtube.com/watch?v=m1KKbJo4nYk&feature=related

6.2.2 Window Panel

Figure 10 shows an animation result made of hundreds
of water drops flowing on a glass window panel. In
this example, droplets may adhere on the window panel
because the surface tension effects dominate. However,
when the volumes of the water drops grow, they become
more susceptible to gravity and start flowing down the
window panel with different terminal speeds. This example
also demonstrates user interactions by allowing the user
to manually move a button over the window panel. Water
drops are pushed away from its trajectory. While the frame
rate varies with the total number of triangles used to define
water drops, we found that the system can still run at 30FPS
even with 50K triangles. The rendering part of this example
is implemented through OpenGL with GPU acceleration.

6.2.3 Lotus Leaves

Figure 12 shows water drops falling onto lotus leaves,
which are considered to be highly hydrophobic surfaces.
During the simulation, there are approximately 180 water
drops containing 30K triangles. The whole system runs at
35 FPS in this example.

6.2.4 Tweety

Our third example, shown in Figure 11, demonstrates how
water drops behave on a curved surface. Since the Tweety
model is significantly more complicated than the previous
two examples, we use an AABB tree to accelerate water-
solid collision detection tests. By assuming that the solid
surface is smooth, the contact angle of each contact vertex
can be calculated in the same way as in flat surface
examples. The minimal contact angle is set to 40◦. When
the surface tension is not strong enough to hold water drops,
they will drip off from the bottom and split into multiple
water drops. This scene contains approximately 10K trian-
gles. The simulation runs at 10 FPS approximately.

6.3 Limitations

While a deformable surface model brings efficiency to our
system, it is less accurate compared with a volumetric
representation since it ignores the interior. Thus, it is not
suitable for handling large bodies of water, when both
viscosity and surface tension effects become less signfi-
cant. Although the mean curvature flow operator in our
system is solved by an implicit time integrator, it is not
unconditionally stable since its stability also relies on the
mesh quality. This issue can be worsened with increased
time steps. When simulating water drops on curved solid
surfaces, we assume that the solid surface is smooth. This
assumption becomes invalid when the solid surface has very
sharp features, which may cause instability in the contact
angle model.
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Fig. 7: A droplet falling onto a hydrophilic surface.

Fig. 8: Droplets on ideal non-wetting surfaces with different tension coefficients 0.05, 0.2 and 1.0 from left to right.

Fig. 9: A water tap example. Surface tension coefficients are 0.01, 0.2, and 1.0, from left to right.

7 CONCLUSION AND FUTURE WORK

In this paper, we proposed a deformable surface model to
animate small-scale fluid motion of water drops. The model
is separated into two components: deformation operators
that evolve the shapes of water drops over time, and mesh
operators that handle topological changes and improve
mesh quality. Using this model, we can efficiently generate
various water drop behaviors. We can also easily combine
it with existing fluid simulators to provide detailed water
drop animations in generic fluid simulations.

In the future, we wish to explore further improvements on
the system performance by a full GPU implemention of
the system. We are also interested in finding better ways to
adaptively re-sample meshes, so that the computational cost
can be further reduced. How to improve the system stability

is another problem that we would like to investigate.
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